Fault Isolation for an Industrial Gas Turbine with a Model-based Diagnosis Approach

نویسندگان

  • Emil Larsson
  • Jan Åslund
  • Erik Frisk
  • Lars Eriksson
چکیده

Model based diagnosis and supervision of industrial gas turbines are studied. Monitoring of an industrial gas turbine is important as it gives valuable information for the customer about service performance and process health. The overall objective of the paper is to develop a systematic procedure for modelling and design of a model based diagnosis system, where each step in the process can be automated and implemented using available software tools. A new Modelica gas media library is developed, resulting in a significant model size reduction compared to if standard Modelica components are used. A systematic method is developed that, based on the diagnosis model, extracts relevant parts of the model and transforms it into a form suitable for standard observer design techniques. This method involves techniques from simulation of DAE models and a model reduction step. The size of the final diagnosis model is 20% of the original model size. Combining the modeling results with fault isolation techniques, simultaneous isolation of sensor faults and fault tolerant health parameter estimation is achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Fault Detection and Isolation Method Based on Belief Rule Base for Industrial Gas Turbines

Real time and accurate fault detection has attracted an increasing attention with a growing demand for higher operational efficiency and safety of industrial gas turbines as complex engineering systems. Current methods based on condition monitoring data have drawbacks in using both expert knowledge and quantitative information for detecting faults. On account of this reason, this paper proposes...

متن کامل

Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines

In this paper, ‎the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented‎. ‎A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis‎. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...

متن کامل

Identification and Robust Fault Detection of Industrial Gas Turbine Prototype Using LLNF Model

In this study, detection and identification of common faults in industrial gas turbines is investigated. We propose a model-based robust fault detection(FD) method based on multiple models. For residual generation a bank of Local Linear Neuro-Fuzzy (LLNF) models is used. Moreover, in fault detection step, a passive approach based on adaptive threshold is employed. To achieve this purpose, the a...

متن کامل

Robust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine

In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...

متن کامل

Variable Speed Wind Turbine DFIG Back to Back Converters Open-Circuit Fault Diagnosis by Using of Combiniation Signal-Based and Model-Based Methodes

Condition monitoring (CM) and Fault Detection (FD) of wind turbine lead to increase in reliability and availability of turbine. IGBT open circuit of wind turbine converter will bring about depletion in output current of converter and as a result, reduction in production of wind turbine power. In this research, back to back converter IGBT open - gate fault for wind turbine based on DFIG is detec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010